深圳市可易亚半导体科技有限公司

国家高新企业

cn en

新闻中心

揭秘高效电源如何选择合适的MOS管及方法详解-KIA MOS管

信息来源:本站 日期:2019-09-16 

分享到:

揭秘高效电源如何选择合适的MOS管及方法详解

开关电源上的MOS管选择方法
(一)开关电源上的MOS管选择方法


MOS管,开关电源


在ORing FET应用中,MOS管的作用是开关器件,但是由于服务器类应用中电源不间断工作,这个开关实际上始终处于导通状态。其开关功能只发挥在启动和关断,以及电源出现故障之时 。


相比从事以开关为核心应用的设计人员,ORing FET应用设计人员显然必需关注MOS管的不同特性。以服务器为例,在正常工作期间,MOS管只相当于一个导体。因此,ORing FET应用设计人员最关心的是最小传导损耗。


(二)开关电源上的MOS管选择方法


MOS管,开关电源


显然,电源设计相当复杂,而且也没有一个简单的公式可用于MOS管的评估。但我们不妨考虑一些关键的参数,以及这些参数为什么至关重要。传统上,许多电源设计人员都采用一个综合品质因数(栅极电荷QG ×导通阻抗RDS(ON))来评估MOS管或对之进行等级划分。


栅极电荷和导通阻抗之所以重要,是因为二者都对电源的效率有直接的影响。对效率有影响的损耗主要分为两种形式--传导损耗和开关损耗。


栅极电荷是产生开关损耗的主要原因。栅极电荷单位为纳库仑(nc),是MOS管栅极充电放电所需的能量。栅极电荷和导通阻抗RDS(ON) 在半导体设计和制造工艺中相互关联,一般来说,器件的栅极电荷值较低,其导通阻抗参数就稍高。开关电源中第二重要的MOS管参数包括输出电容、阈值电压、栅极阻抗和雪崩能量。


某些特殊的拓扑也会改变不同MOS管参数的相关品质,例如,可以把传统的同步降压转换器与谐振转换器做比较。谐振转换器只在VDS (漏源电压)或ID (漏极电流)过零时才进行MOS管开关,从而可把开关损耗降至最低。这些技术被成为软开关或零电压开关(ZVS)或零电流开关(ZCS)技术。由于开关损耗被最小化,RDS(ON) 在这类拓扑中显得更加重要。


低输出电容(COSS)值对这两类转换器都大有好处。谐振转换器中的谐振电路主要由变压器的漏电感与COSS决定。此外,在两个MOS管关断的死区时间内,谐振电路必须让COSS完全放电。


低输出电容也有利于传统的降压转换器(有时又称为硬开关转换器),不过原因不同。因为每个硬开关周期存储在输出电容中的能量会丢失,反之在谐振转换器中能量反复循环。因此,低输出电容对于同步降压调节器的低边开关尤其重要。


MOS管初选基本步骤
1 电压应力

在电源电路应用中,往往首先考虑漏源电压VDS的选择。在此上的基本原则为MOSFET实际工作环境中的最大峰值漏源极间的电压不大于器件规格书中标称漏源击穿电压的 90% 。


即:

VDS_peak ≤ 90% * V(BR)DSS


注:一般地, V(BR)DSS 具有正温度系数。故应取设备最低工作温度条件下之 V(BR)DSS 值作为参考。


2 漏极电流

其次考虑漏极电流的选择。基本原则为MOSFET实际工作环境中的最大周期漏极电流不大于规格书中标称最大漏源电流的90%;漏极脉冲电流峰值不大于规格书中标称漏极脉冲电流峰值的 90% 。


即:

ID_max ≤ 90% * ID

ID_pulse ≤ 90% * IDP


注:一般地,ID_max及ID_pulse具有负温度系数,故应取器件在最大结温条件下之ID_max及ID_pulse值作为参考。器件此参数的选择是极为不确定的—主要是受工作环境,散热技术,器件其它参数(如导通电阻,热阻等)等相互制约影响所致。最终的判定依据是结点温度(即如下第六条之“耗散功率约束”)。根据经验,在实际应用中规格书目中之ID会比实际最大工作电流大数倍,这是因为散耗功率及温升之限制约束。在初选计算时期还须根据下面第六条的散耗功率约束不断调整此参数。建议初选于 3~5 倍左右 ID = (3~5)*ID_max 。


3 驱动要求

MOSFEF的驱动要求由其栅极总充电电量(Qg)参数决定。在满足其它参数要求的情况下,尽量选择Qg小者以便驱动电路的设计。驱动电压选择在保证远离最大栅源电压( VGSS )前提下使 Ron 尽量小的电压值(一般使用器件规格书中的建议值)


4 损耗及散热

小的 Ron 值有利于减小导通期间损耗,小的 Rth 值可减小温度差(同样耗散功率条件下),故有利于散热。


5 损耗功率初算

MOSFET 损耗计算主要包含如下 8 个部分:


即:

PD = Pon + Poff + Poff_on + Pon_off + Pds + Pgs+Pd_f+Pd_recover


详细计算公式应根据具体电路及工作条件而定。例如在同步整流的应用场合,还要考虑体内二极管正向导通期间的损耗和转向截止时的反向恢复损耗。损耗计算可参考下文的“MOS管损耗的8个组成部分”部分。


6 耗散功率约束

器件稳态损耗功率 PD,max 应以器件最大工作结温度限制作为考量依据。如能够预先知道器件工作环境温度,则可以按如下方法估算出最大的耗散功率:


即:

PD,max ≤( Tj,max - Tamb )/ Rθj-a


其中Rθj-a是器件结点到其工作环境之间的总热阻包括Rθjuntion-case,Rθcase-sink,Rθsink-ambiance等。如其间还有绝缘材料还须将其热阻考虑进去。


揭秘高效电源如何选择合适的MOS管

在当今的开关电源设备中,MOS管的特性、寄生参数和散热条件都会对MOS管的工作性能产生重大影响。因此深入了解功率MOS管的工作原理和关键参数对电源设计工程师至关重要。

目前,影响开关电源电源效率最大的两个损耗因素是:导通损耗和开关损耗,以下分别对这两种损耗做具体分析。


1、导通损耗

导通损耗具体来讲是由MOS管的导通阻抗Rds产生的,Rds与栅极驱动电压Vgs和流经MOS管的电流有关。如果想要设计出效率更高、体积更小的电源,必须充分降低导通阻抗。如图1所示是导通阻抗Rds、Vgs和Id的曲线图:


MOS管,开关电源


2、开关损耗

栅极电荷Qg是产生开关损耗的主要原因。栅极电荷是MOS管门极充放电所需的能量,相同电流、电压规格的MOSFET,具有比较大的栅极电荷意味着在MOS开关过程中会损耗更多的能量。所以,为了尽可能降低MOS管的开关损耗,工程师在电源设计过程中需要选择同等规格下Qg更低的MOS管作为主功率开关管。如图2所示是栅极电荷Qg与Vgs的曲线图:


MOS管,开关电源


3、MOS管选型

针对开关电源的应用,美国中央半导体(Central Semi)推出了一系列低Rds和Qg的功率MOSFET。代表型号为CDM2205-800FP,该MOS管具有以下性能优势:


? 最大耐压为800V


? 最大连续电流5A


? 导通阻抗低至2.2Ω


? 栅极电荷Qg仅为17.4nC


如图3所示是CDM2205-800FP在反激开关电源中的应用。在电源设计器件选型中,首先根据电源的输入电压,确定器件所能承受的最大电压,额定电压越大,器件的成本就越高。然后需要确定 MOS管的额定电流,该额定电流应该是负载在所有情况下能够承受的最大电流。确保所选择的MOS管能够承受连续电流和脉冲尖峰。


MOS管,开关电源


联系方式:邹先生

联系电话:0755-83888366-8022

手机:18123972950

QQ:2880195519

联系地址:深圳市福田区车公庙天安数码城天吉大厦CD座5C1


请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号

请“关注”官方微信公众号:提供 MOS管 技术帮助