广东可易亚半导体科技有限公司

国家高新企业

cn en

新闻中心

MOS管种类与MOS管最全知识图文分享-KIA MOS管

信息来源:本站 日期:2021-02-22 

分享到:

MOS管种类与MOS管最全知识图文分享-KIA MOS管


MOS管的种类

MOS管种类:MOS管是FET的一种(另一种为JFET结型场效应管),主要有两种结构形式:N沟道型和P沟道型;又根据场效应原理的不同,分为耗尽型(当栅压为零时有较大漏极电流)和增强型(当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流)两种。


因此,MOS管可以被制构成P沟道增强型、P沟道耗尽型、N沟道增强型、N沟道耗尽型4种类型产品。MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势,在开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域得到了越来越普遍的应用。


MOS管种类


每一个MOS管都提供有三个电极:Gate栅极(表示为“G”)、Source源极(表示为“S”)、Drain漏极(表示为“D”)。接线时,对于N沟道的电源输入为D,输出为S;P沟道的电源输入为S,输出为D;且增强型、耗尽型的接法基本一样。


从结构图可发现,N沟道型场效应管的源极和漏极接在N型半导体上,而P沟道型场效应管的源极和漏极则接在P型半导体上。场效应管输出电流由输入的电压(或称场电压)控制,其输入的电流极小或没有电流输入,使得该器件有很高的输入阻抗,这也是MOS管被称为场效应管的重要原因。


MOS管的特性:

在MOS管的工作原理中可以看出,MOS管的栅极G和源极S之间是绝缘的,由于SiO2绝缘层的存在,在栅极G和源极S之间等效是一个电容存在,电压VGS产生电场从而导致源极-漏极电流的产生。此时的栅极电压VGS决定了漏极电流的大小,控制栅极电压VGS的大小就可以控制漏极电流ID的大小。


这就可以得出如下结论:

1.MOS 管是一个由改变电压来控制电流的器件,所以是电压器件。


2.MOS 管道输入特性为容性特性,所以输入阻抗极高。


MOS管重要特性

1.导通特性

导通的意义是作为开关,相当于开关闭合。NMOS的特性,VGS大于一定的值就会导通,适用于源极接地时的情况(低端驱动),只需栅极电压达到4V或10V就可以了。PMOS的特性是,VGS小于一定的值就会导通,适用于源极接VCC时的情况(高端驱动)。


2.损失特性

不管是NMOS还是PMOS,导通后都有导通电阻存在,电流就会被电阻消耗能量,这部分消耗的能量叫做导通损耗。小功率MOS管导通电阻一般在几毫欧至几十毫欧左右,选择导通电阻小的MOS管会减小导通损耗。


MOS管在进行导通和截止时,两端的电压有一个降落过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,这称之为开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。


导通瞬间电压和电流的乘积越大,构成的损失也就越大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。


3.寄生电容驱动特性

跟双极性晶体管相比,MOS管需要GS电压高于一定的值才能导通,而且还要求较快的导通速度。在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,理论上就是对电容的充放电。


对电容的充电需要一个电流,由于对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一个要留意的是可提供瞬间短路电流的大小;第二个要留意的是,普遍用于高端驱动的NMOS,导通时需要栅极电压大于源极电压。


而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极导通电压要比VCC高4V或10V,而且电压越高,导通速度越快,导通电阻也越小。


MOS管种类


MOS管与三极管、IBGT的差别

三极管全称为半导体三极管,它的主要作用就是将微小的信号中止放大。MOS管与三极管有着许多相近的地方,也有许多不同之处。


首先是开关速度的不同。三极管工作时,两个PN结都会感应出电荷,当开关管处于导通状态时,三极管处于饱和状态,假设这时三极管截至,PN结感应的电荷要恢复到平衡状态,这个过程需求时间。而MOS由于工作方式不同,不需要恢复时间,因此可以用作高速开关管。


其次是控制方式不同。MOS管是电压控制元件,而三级管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用MOS管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用三极管。


接着是载流子种类数量不同。电力电子技术中提及的单极器件是指只靠一种载流子导电的器件,双极器件是指靠两种载流子导电的器件。MOS管只应用了一种多数载流子导电,所以也称为单极型器件;而三极管是既有多数载流子,也应用少数载流子导电;是为双极型器件。


第三是灵活性不同。有些MOS管的源极和漏极可以互换运用,栅压也可正可负,灵活性比三极管好。


第四是集成能力不同。MOS管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多MOS管集成在一块硅片上,因此MOS管在大范围集成电路中得到了普遍的应用。


第五是输入阻抗和噪声能力不同。MOS管具有较高输入阻抗和低噪声等优点,被普遍应用于各种电子设备中,特别用MOS管做整个电子设备的输入级,可以获得普通三极管很难达到的性能。


最后是功耗损耗不同。同等情况下,采用MOS管时,功耗损耗低;而选用三极管时,功耗损耗要高出许多。


当然,在使用成本上,MOS管要高于三极管,因此根据两种元件的特性,MOS管常用于高频高速电路、大电流场所,以及对基极或漏极控制电流比较敏感的中央区域;而三极管则用于低成本场所,达不到效果时才会考虑替换选用MOS管。


MOS管种类


IGBT(InsulatedGateBipolarTransistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS绝缘栅型场效应管组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和功率晶体管(GTR)的低导通压降两方面的优点。


GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。


常见的IGBT又分为单管和模块两种,单管的外观和MOS管有点相像,常见生产厂家有富士电机、仙童半导体等,模块产品一般为内部封装了数个单个IGBT,由内部联接成适合的电路。


由于IGBT原理为先开通MOS管,再驱动三极管开通,该原理决定了IGBT的开关速度比MOS管慢,但比三极管快。制造成本上,IGBT要比MOS管高很多,这是因为IGBT的制作多了薄片背面离子注入、薄片低温退火(如激光退火)工序,而这两个工序都需要专门针对薄片工艺的昂贵机台。


在低压下,低压MOS管的导通压降通常都控制在0.5V以下(基本不会超过1V的),比如IR4110低压MOS管,其内阻为4mΩ,给它100A的导通电流,导通压降是0.4V左右。


电流导通压降低,意味着导通损耗小,同时兼具开关损耗小的特性,因此,IGBT相对MOS管在电性能没有优势,加上在性价比上MOS管更具优势,所以基本上看不到低压IGBT。


MOS管的最大劣势是随着耐压升高,内阻迅速增大,所以高压下内阻很大,致使MOS管不能做大功率应用。


在高压领域,MOS管的开关速度仍是最快的,但高压下MOS管的导通压降很大(内阻随耐压升高而迅速升高),即便是耐压600V的COOLMOS管,导通电阻可高达几欧姆,致使耐流很小。


而IGBT在高耐压下,导通压降几乎没明显增大(IGBT的导通电流通过三极管处理),所以高压下IGBT优势明显,既有高开关速度,又有三极管的大电流特性;另外,在新一代IGBT产品中,开关速度高(纳秒级),导通压降、开关损耗等也有了长足进步,使得IGBT耐脉冲电流冲击力更强,且耐压高、驱动功率小等优点更加突出。


在需要耐压超过150V的使用条件下,MOS管已经基本没有优势。以典型的IRFS4115与第四代IGBT型SKW30N60对比中,在150V、20A连续工况下运行,前者开关损耗为6mJ/pulse,而后者只有1.15mJ/pulse,不足前者的1/5;若用极限工作条件,二者功率负荷相差将更悬殊。


目前,诸如冶金、钢铁、高速铁路、船舶等有大功率需求的领域已较少见到MOS管,而是广泛应用IGBT元器件。


总的来说,IGBT更适用于高压、大电流、低频率(20KHZ左右)场所,电压越高,IGBT越有优势,在600v以上,IGBT的优势非常明显;而MOSFET更适用于低电压、小电流、低频率(几十KHz~几MHz)领域,电压越低,MOS管越有优势。




联系方式:邹先生

联系电话:0755-83888366-8022

手机:18123972950

QQ:2880195519

联系地址:深圳市福田区车公庙天安数码城天吉大厦CD座5C1


请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号

请“关注”官方微信公众号:提供  MOS管  技术帮助