广东可易亚半导体科技有限公司

国家高新企业

cn en

应用领域

【图文详解】超级结MOSFET结构、工作原理-KIA MOS管

信息来源:本站 日期:2022-03-04 

分享到:

【图文详解】超级结MOSFET结构、工作原理-KIA MOS管


超级结MOSFET(SJ-MOS)

(1)SJ-MOS在N层具有柱状P层(P柱层)。P层和N层交替排列。(参见图3-9(b))


(2)通过施加VDS,耗尽层在N层中扩展,但其在SJ-MOS中的扩展方式与在一般D-MOS中不同。(关于电场强度,参见图3-9(a)/(b)。电场强度将表示耗尽层的状态。


(3)如果是D-MOS的情况,电场强度在P/N层接口处最强。当电场强度超过硅的极限时,会发生击穿现象,这就是电压极限。另一方面,如果是SJ-MOS的情况,电场强度在N层中是均匀的。


(4)所以,SJ-MOS可采用具有较低电阻的N层设计,以实现低导通电阻产品。


采用与DMOS相同尺寸的芯片,SJ-MOS可以实现更低的导通电阻。

超级结MOSFET 超结型结构

图3-9(a)D-MOS(π-MOS)的结构和电场


超级结MOSFET 超结型结构

图3-9(b)SJ-MOS(DTMOS)的结构和电场


超级结MOSFET的结构

高压的功率MOSFET的外延层对总的导通电阻起主导作用,要想保证高压的功率MOSFET具有足够的击穿电压,同时,降低导通电阻,最直观的方法就是:在器件关断时,让低掺杂的外延层保证要求的耐压等级,同时,在器件导通时,形成一个高掺杂N+区,作为功率MOSFET导通时的电流通路,也就是将反向阻断电压与导通电阻功能分开,分别设计在不同的区域,就可以实现上述的要求。


基于超结SuperJunction的内建横向电场的高压功率MOSFET就是基本这种想法设计出的一种新型器件。内建横向电场的高压MOSFET的剖面结构及高阻断电压低导通电阻的示意图如图3所示。Infineon最先将这种结构生产出来,并为这种结构的MOSFET设计了一种商标CoolMOS,这种结构从学术上来说,通常称为超结型功率MOSFET。


超级结MOSFET 超结型结构

图3:内建横向电场的SuperJunction结构


垂直导电N+区夹在两边的P区中间,当MOS关断时,形成两个反向偏置的PN结:P和垂直导电N+、P+和外延epi层N-。栅极下面的的P区不能形成反型层产生导电沟道,P和垂直导电N+形成PN结反向偏置,PN结耗尽层增大,并建立横向水平电场;同时,P+和外延层N-形成PN结也是反向偏置形,产生宽的耗尽层,并建立垂直电场。


由于垂直导电N+区掺杂浓度高于外延区N-的掺杂浓度,而且垂直导电N+区两边都产生横向水平电场,这样垂直导电的N+区整个区域基本上全部都变成耗尽层,即由N+变为N-,这样的耗尽层具有非常高的纵向的阻断电压,因此,器件的耐压就取决于高掺杂P+区与低掺杂外延层N-区的耐压。


当MOS导通时,栅极和源极的电场将栅极下的P区反型,在栅极下面的P区产生N型导电沟道,同时,源极区的电子通过导电沟道进入垂直的N+区,中和N+区的正电荷空穴,从而恢复被耗尽的N+型特性,因此导电沟道形成,垂直N+区掺杂浓度高,具有较低的电阻率,因此导通电阻低。


比较平面结构和沟槽结构的功率MOSFET,可以发现,超结型结构实际是综合了平面型和沟槽型结构两者的特点,是在平面型结构中开一个低阻抗电流通路的沟槽,因此具有平面型结构的高耐压和沟槽型结构低电阻的特性。


内建横向电场的高压超结型结构与平面型结构相比较,同样面积的硅片可以设计更低的导通电阻,因此具有更大的额定电流值和雪崩能量。


由于要开出N+沟槽,它的生产工艺比较复杂,目前N+沟槽主要有两种方法直接制作:通过一层一层的外延生长得到N+沟槽和直接开沟槽。前者工艺相对的容易控制,但工艺的程序多,成本高;后者成本低,但不容易保证沟槽内性能的一致性。


超结型结构的工作原理

1、关断状态

从图4中可以看到,垂直导电N+区夹在两边的P区中间,当MOS关断时,也就是G极的电压为0时,横向形成两个反向偏置的PN结:P和垂直导电N+、P+和外延epi层N-。


栅极下面的的P区不能形成反型层产生导电沟道,左边P和中间垂直导电N+形成PN结反向偏置,右边P和中间垂直导电N+形成PN结反向偏置,PN结耗尽层增大,并建立横向水平电场。


当中间的N+的渗杂浓度和宽度控制得合适,就可以将中间的N+完全耗尽,如图4(b)所示,这样在中间的N+就没有自由电荷,相当于本征半导体,中间的横向电场极高,只有外部电压大于内部的横向电场,才能将此区域击穿,所以,这个区域的耐压极高,远大于外延层的耐压,功率MOSFET管的耐压主要由外延层来决定。


超级结MOSFET 超结型结构

图4:横向电场及耗尽层


注意到,P+和外延层N-形成PN结也是反向偏置形,有利于产生更宽的耗尽层,增加垂直电场。


2、开通状态

当G极加上驱动电压时,在G极的表面将积累正电荷,同时,吸引P区的电子到表面,将P区表面空穴中和,在栅极下面形成耗尽层,如图5示。


随着G极的电压提高,栅极表面正电荷增强,进一步吸引P区电子到表面,这样,在G极下面的P型的沟道区中,积累负电荷,形成N型的反型层,同时,由于更多负电荷在P型表面积累,一些负电荷将扩散进入原来完全耗尽的垂直的 N+,横向的耗尽层越来越减小,横向的电场也越来越小。


G极的电压进一步提高,P区更宽范围形成N型的反型层,最后,N+区域回到原来的高渗杂的状态,这样,就形成的低导通电阻的电流路径,如图5(c)所示。


超级结MOSFET 超结型结构

图5:超结型导通过程




联系方式:邹先生

联系电话:0755-83888366-8022

手机:18123972950

QQ:2880195519

联系地址:深圳市福田区车公庙天安数码城天吉大厦CD座5C1


请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号

请“关注”官方微信公众号:提供  MOS管  技术帮助

免责声明:本网站部分文章或图片来源其它出处,如有侵权,请联系删除。