广东可易亚半导体科技有限公司

国家高新企业

cn en

应用领域

耗尽层是什么?PN结、耗尽层图文分析-KIA MOS管

信息来源:本站 日期:2024-01-31 

分享到:

耗尽层是什么?PN结、耗尽层图文分析-KIA MOS管


PN结基本概念:半导体材料一侧掺入受主杂质(提供空穴),另一侧掺入施主杂质(提供电子)所形成的结构称为PN结。


耗尽层,是指PN结中在漂移运动和扩散作用的双重影响下载流子数量非常少的一个高电阻区域。耗尽层的宽度与材料本身性质、温度以及偏置电压的大小有关。


耗尽层(depletion region),又称耗尽区、阻挡层、势垒区(barrier region),是指PN结中在漂移运动和扩散作用的双重影响下载流子数量非常少的一个高电阻区域。耗尽层的宽度与材料本身性质、温度以及偏置电压的大小有关。


耗尽区的命名,因为它是由导电区域通过除去所有自由电荷载体而形成的,而不留下任何电流。了解耗尽区是解释现代半导体电子器件的关键:二极管,双极结型晶体管,场效应晶体管和可变电容二极管都依赖于耗尽区现象。


PN结的形成

在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。


在P型半导体和N型半导体结合后,由于N型区内自由电子为多子,空穴几乎为零称为少子,而P型区内空穴为多子,自由电子为少子,在它们的交界处就出现了电子和空穴的浓度差。由于自由电子和空穴浓度差的原因,有一些电子从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。


它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。开路中半导体中的离子不能任意移动,因此不参与导电。这些不能移动的带电粒子在P和N区交界面附近,形成了一个空间电荷区,空间电荷区的薄厚和掺杂物浓度有关。


在空间电荷区形成后,由于正负电荷之间的相互作用,在空间电荷区形成了内电场,其方向是从带正电的N区指向带负电的P区。显然,这个电场的方向与载流子扩散运动的方向相反,阻止扩散。


另一方面,这个电场将使N区的少数载流子空穴向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,内电场减弱。因此,漂移运动的结果是使空间电荷区变窄,扩散运动加强。


最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。


能带上,通常这么表示:

<p style=

pn结的空间电荷区中存在有较强的内建电场,其中的载流子基本上都被该内建电场驱赶出去了,因此,通常可以认为空间电荷区中的电荷几乎完全是由电离杂质中心所提供的,即主要是电离的施主和受主杂质中心的电荷,这种空间电荷区就称为耗尽层(意即其中的载流子——电子和空穴都被耗尽了)。


联系方式:邹先生

联系电话:0755-83888366-8022

手机:18123972950(微信同号)

QQ:2880195519

联系地址:深圳市福田区金田路3037号金中环国际商务大厦2109


请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号

请“关注”官方微信公众号:提供  MOS管  技术帮助

免责声明:本网站部分文章或图片来源其它出处,如有侵权,请联系删除。