广东可易亚半导体科技有限公司

国家高新企业

cn en

新闻中心

场效应管工作原理图-场效应管原理图简介、参数、作用详解-KIA MOS管

信息来源:本站 日期:2018-07-11 

分享到:

场效应管工作原理图

这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管工作原理图。

MOS场效应管也被称为MOSFET, 既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS 场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于MOS场效应管工作原理图场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

MOS场效应管工作原理图

为解释MOS

场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。

MOS场效应管工作原理图

对于MOS场效应管工作原理图(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。图8给出了P沟道的MOS场效应管的工作过程,其工作原理类似这里不再重复。

MOS场效应管工作原理图

下面简述一下用C-MOS场效应管(增强型MOS 场效应管)组成的应用电路的工作过程(见图9)。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管工作原理图MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。

MOS场效应管工作原理图

场效应管三个极

效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。有N沟道器件和P沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。

场效应管有三个电极:

D(Drain) 称为漏极,相当双极型三极管的集电极;

G(Gate) 称为栅极,相当于双极型三极管的基极;

S(Source) 称为源极,相当于双极型三极管的发射极。

MOS场效应管工作原理图


增强型MOS场效应管

道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极 G。P型半导体称为衬底(substrat),用符号B表示。

工作原理

1.沟道形成原理

当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。


当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。


进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着Vgs的继续增加,ID将不断增加。


在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。


VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。

MOS场效应管工作原理图

转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。 gm 的量纲为mA/V,所以gm也称为跨导。


跨导的定义式如下:

MOS场效应管工作原理图

gm=△ID/△VGS|(单位mS)


2. Vds对沟道导电能力的控制

当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。Vds的不同变化对沟道的影响如图所示。

MOS场效应管工作原理图

根据此图可以有如下关系:

VDS=VDG+VGS= —VGD+VGS

VGD=VGS—VDS


当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,漏源之间有电流通过。


当VDS 增加到使VGD=VGS(th)时,相当于VDS增加使漏极处沟道缩减到刚刚开启的情况,称为预夹断,此时的漏极电流ID基本饱和。


当VDS增加到 VGD


当VGS>VGS(th),且固定为某一值时,VDS对ID的影响,即iD=f(vDS)|VGS=const这一关系曲线如图所示。


这一曲线称为漏极输出特性曲线。

MOS场效应管工作原理图

伏安特性

1. 非饱和区

非饱和区(Nonsaturation Region)又称可变电阻区,是沟道未被预夹断的工作区。由不等式VGS>VGS(th)、VDS


2.饱和区

饱和区(Saturation Region)又称放大区,是沟道预夹断后所对应的工作区。由不等式VGS>VGS(th)、VDS>VGS-VGS(th) 限定。漏极电流表达式:


在这个工作区内,ID受VGS控制。考虑厄尔利效应的ID表达式:


3.截止区和亚阈区

VGS


4.击穿区

当VDS 增大到足以使漏区与衬底间PN结引发雪崩击穿时,ID迅速增加,管子进入击穿区。


场效应管的主要参数

① 开启电压VGS(th) (或VT)

开启电压是MOS增强型管的参数,栅源电压小于开启电压的绝对值,场效应管不能导通。


② 夹断电压VGS(off) (或VP)

夹断电压是耗尽型FET的参数,当VGS=VGS(off) 时,漏极电流为零。


③ 饱和漏极电流IDSS

耗尽型场效应三极管,当VGS=0时所对应的漏极电流。


④ 输入电阻RGS

场效应三极管的栅源输入电阻的典型值,对于结型场效应三极管,反偏时RGS约大于107Ω,对于绝缘栅场型效应三极管,RGS约是109~1015Ω。


⑤ 低频跨导gm

低频跨导反映了栅压对漏极电流的控制作用,这一点与电子管的控制作用十分相像。gm可以在转移特性曲线上求取,单位是mS(毫西门子)。


⑥ 最大漏极功耗PDM

最大漏极功耗可由PDM=VDS ID决定,与双极型三极管的PCM相当


定性判断MOS型场效应管的好坏

先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。


定性判断结型场效应管的电极

将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。


判断理由:

JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS↓,IDS↑。但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。


注意事项:

(1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。


(2)也可以用舌尖舔住栅极,现象同上。


晶体三极管管脚判别

三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。


联系方式:邹先生

联系电话:0755-83888366-8022

手机:18123972950

QQ:2880195519

联系地址:深圳市福田区车公庙天安数码城天吉大厦CD座5C1


请搜微信公众号:“KIA半导体”或扫一扫下图“关注”官方微信公众号

请“关注”官方微信公众号:提供  MOS管  技术帮助

MOS场效应管工作原理图

MOS场效应管工作原理图